Что такое барьер вейсмана
Основные положения традиционной неодарвинистской теории эволюции
Основные положения традиционной неодарвинистской теории эволюции
• Наследственность
Генетический материал (ДНК) может передаваться неизменным от поколения к поколению.
• Мутации
• Случайная передача отцовских и материнских хромосом потомку
Оплодотворенная яйцеклетка, из которой развивается человеческий эмбрион, имеет 46 хромосом. В репродуктивных органах (семенниках и яичниках) половозрелых людей происходит особое деление клеток (мейоз), в результате которого число хромосом уменьшается вдвое (гаплоидное число 23). Гаплоидный набор хромосом упаковывается в сперматозоиды у мужчин и в яйцеклетки у женщин. При оплодотворении число хромосом восстанавливается до 46 (диплоидное число). Потомок получает от каждого из родителей 23 случайно выбранные хромосомы, которые родители в свою очередь унаследовали от своих родителей. Все яйцеклетки содержат половую хромосому одного типа, а именно Х-хромосому. В сперматозоидах содержатся либо Х-, либо Y- хромосома. Набор половых хромосом XX определяет женский пол плода, XY — мужской. Все остальные признаки детерминируются случайным сочетанием хромосом. Таким образом, наши обычные житейские наблюдения над детьми справедливы, и если нам кажется, что у «Тома мамино лицо, но папины руки!», значит так оно и есть.
• Рекомбинация
У видов, размножающихся половым путем, физический обмен (кроссинговер, или рекомбинация) между отцовскими и материнскими хромосомами, который происходит во время образования гамет (сперматозоидов и яйцеклеток), вызывает перетасовку существующих последовательностей ДНК. Этот процесс приводит к появлению новых комбинаций наследственных признаков у потомков.
• Естественный отбор и эволюция
Не все генетически разные организмы размножаются одинаково, т.е. с одинаковой скоростью. Условия среды отбирают более приспособленные организмы и дают им селективные преимущества. Если бы не было отбора, не было бы и общих генетических изменений. Эволюция, следовательно, является результатом взаимодействия генетического материала с внутренними (клеточными, внутри организма) и с внешними условиями развития организма и может быть представлена как отбор комбинаций генов, имеющих наибольшую приспособленность.
• Изоляция
В больших популяциях свободное скрещивание между разными генотипами, расширяющее пул генов, в котором действует естественный отбор, невозможно из-за внутренних и внешних изолирующих факторов. Самым простым является географическое отделение потомков от общего предка. Например, некогда единая популяция вьюрков на островах Галапагосского архипелага со временем разделилась на изолированные, небольшие, инбредные популяции. Дарвин заметил, что именно это оказалось важнейшим условием появления новых видов.
• Дрейф
Последовательности ДНК, различаются ли они по большому участку или по одному нуклеотиду, могут быть потеряны по случайным причинам. Генетический дрейф является частью случайного фонового шума, изменяющего сложившийся состав последовательностей ДНК в популяции.
• Барьер Вейсмана
Приобретенные соматические модификации у многоклеточных организмов не могут наследоваться.
Итак, мы представили вам две, отнюдь не несовместимые, концепции. Первая — традиционная неодарвинистская теория о том, что важная для эволюции генетическая изменчивость существует до того, как подействует селективная сила (естественный отбор). И вторая — традиционно отвергаемая ламарков-ская теория о том, что генетическая изменчивость возникает одновременно с отбором. Последняя концепция особенно важна для процессов, протекающих в иммунной системе, для которых селективная сила, или стимул внешней среды (инфекционное заболевание), действует одновременно с появлением новых генетических вариантов.
Таким образом, исторически всегда существовал альтернативный (ламаркисткий) взгляд на механизм эволюционных изменений. Этот механизм легко объясняет, почему некоторые виды смогли очень быстро генетически измениться при внезапных изменениях среды, во время катастроф; также легко объяснить быстрое создание разных пород домашних животных. В этой книге мы рассмотрим, насколько реальны такие изменения с позиций молекулярной генетики. Мы ни в коем случае не утверждаем, что идея Дарвина о естественном отборе случайной предсуществующей изменчивости неверна. Наоборот, мы стремимся доказать, что дарвиновская идея чрезвычайно важна для ламаркистской концепции обратной связи генов сомы и зародышевой линии. По-видимому, правы и Дарвин, и Ламарк. Их взгляды дополняют друг друга. Именно это мы попытаемся продемонстрировать с помощью создаваемой нами теории эво-люционно-генетических изменений иммунной системы.
Рис. 1.1. Теория пангенезиса Чарльза Дарвина, 1868. Теория пангенезиса предложена Чарльзом Дарвином для объяснения причин биологической изменчивости, на которую действует естественный отбор. Основная идея его теории «упражнения и неупражнения» заключается в повышении активности органа-мишени, вызванной стимулами внешней среды (например, токсинами в изменившейся пище). Измененная метаболическая активность ткани-мишени (в данном случае, печени) приводит к приспособлению, далее, согласно теории, из этого органа выделяются «геммулы», или «пангены», которые попадают в кровеносную систему и из нее в половые клетки. Таким образом, измененная функция органа фиксируется в половых клетках и наследуется потомками. Следовательно, Дарвин предположил ламаркистский механизм генетической передачи приобретенных признаков.
В 1868 г. Дарвин пришел к заключению, что соматические изменения, появляющиеся в результате специфического приспособления, стимулируют клетки органа-мишени к выделению некоего наследственного материала в форме, которую он назвал геммулами (или пангенами). Геммулы — это представители каждой нормальной или измененной части тела. Онивыделяются активным органом в кровоток, и, циркулируя по телу, могут попадать в половые клетки и передаваться следующему поколению. Рис. 1.1 иллюстрирует теорию пангенезиса Дарвина. Как мы покажем в следующих главах, Дарвин предвидел не только естественный отбор случайных изменений, но и роль выделяемых телом геммул, записывающих наследуемый эффект, как мы говорим сейчас, на ДНК зародышевой линии.
В 1977 г. Тед Стил предложил гипотезу соматического отбора, которая представляет собой современную молекулярную точку зрения на идею пангенезиса (Steele, 1977). Согласно этой гипотезе, эволюция генов вариабельных участков антител происходит через преодоление вейсмановского барьера, т. е. в результате обратной связи генов сомы (тела) и зародышевой линии. Этот механизм допускает появление новых генетических вариантов в ответ на внедрение микробов из внешней среды. Таким образом, гипотеза соматического отбора представляет собой версию ламарковского наследования, основанную на современных молекулярных данных. Вначале эта идея многими была признана как «еретическая». Однако появившиеся за последние двадцать лет данные изменили отношение к ней. Сейчас нет сомнений в том, что в результате активации антигенами вторгнувшегося инфекционного агента гены, кодирующие белки (антитела), необходимые для распознавания чужеродного агента, подвергаются в соматических клетках быстрому мутиро-ванию (гипермутированию). Самые последние исследования подтверждают то, что мутантные гены антител попадают в ДНК зародышевой линии в результате процесса обратной транскрипции. На рис. 1.2 показано, как соматические изменения могут включаться в ДНК половых клеток.
Рис. 1.2. Предполагаемый механизм соматического отбора в иммунной системе.
1. Множество разнообразных В-лимфоцитов существует до того, как чужеродный антиген попадает в организм. Каждая клетка экспесси-рует на своей поверхностной мембране антитела одной специфичности. Гены вариабельной V-области кодируют те участки антитела, которые образуют антигенсвязывающий центр (как показано на рисунке). Чужеродный антиген связывается с В-клетками, имеющими комплементарное антитело — таким образом, эти клетки «отбираются» в дарвиновском смысле («клональная селекция»).
2. После связывания антигена В-клетка активируется и делится, давая потомков, которые в свою очередь тоже делятся. В результате образуется множество идентичных дочерних клеток — клон. Все клетки клона экспрессируют одинаковые антитела («клональная экспансия»). В отдельных клетках этого клона гены вариабельной области могут мутировать (соматические мутации). Эти клетки в свою очередь могут быть отобраны антигеном для образования нового клона.
3. Внутри клеток клона создаются РНК-копии генов вариабельной V-области. Зрелые молекулы информационной РНК переходят в цитоплазму, где они транслируются в последовательности аминокислот, составляющие белковые цепи антитела
4. Молекулы РНК V-генов (ядерные или цитоплазматические) могут «захватываться» безвредными эндогенными РНК-ретровирусами (продуцируемыми клеткой). Вирусный фермент обратная транс-криптаза может синтезировать ДНК-копию этой РНК (эта копия ДНК называется ретротранскриптом, или кДНК).
5. Копии V-генов антител с помощью вирусов переносятся в сперматозоиды или яйцеклетки, встраиваются в ДНК половых клеток (зародышевой линии) и передаются потомкам, (см. гл. 6)
Открытие в конце 1950-х г. Говардом Теминым (Temin) феномена обратной транскрипции поначалу вызвало сомнение. Однако после присуждения в 1975 г. Темину и Балтимору (Baltimore) Нобелевской премии этот процесс признан всеми как важный элемент репликации ретровирусов (таких, как ВИЧ) и некоторых других событий в клетке. (Свое название ре-тровирусы получили вследствие того, что у них поток генетической информации направлен от РНК к ДНК, т. е. в направлении, обратном существующему во всех живых клетках — от ДНК к РНК.) Главная цель этой книги — показать, как новые данные молекулярной генетики разрушают построения неодарвинистов, рассматривающих отбор случайных генетических вариантов в качестве единственного фактора эволюционных изменений. Мы хотим доказать актуальность новой теории эволюции иммунной системы, основанной на объединении концепций Дарвина и Ламарка.
Почему же точка зрения Ламарка вызвала столько споров? В наши планы не входит полный анализ этого вопроса, однако некоторые исторические моменты борьбы дарвинизма и ламаркизма все же следует отметить. Во-первых, в 1885 г., через три года после смерти Дарвина, немецкий биолог Август Вейсман (Weismann), отвечая на вызов, брошенный теорией пангенезиса, провозгласил существование барьера между соматическими и половыми клетками (рис. 1.3), защищающего половые клетки от любого изменения тела. Вейсман пытался проверить, могут ли наследоваться приобретенные родителями увечья. Например, он вырезал аппендикс или другую ткань и показывал, что потомство не наследует этих нарушений. Но любой мыслящий человек и без этого знает, что иудейская традиция обрезания ни разу не привела к рождению мальчика без крайней плоти. Вейсман провел и другие эксперименты, в частности, с гидрой (Hydra). Однако наиболее известна его работа по отрубанию хвостов у только что родившихся крысят. В длившихся много поколений экспериментах Вейсман показал, что отрубание хвостов никогда не приводило к появлению бесхвостого потомства. Ученые, критиковавшие этот эксперимент, указывали, что такими опытами нельзя проверить идею Ламарка. Короткий обрубленный хвост — это модификация, индуцированная не крысой. А по Ламарку наследоваться могут только модификации, индуцированные ответом организма на условия среды. Если бы Вейсман изучал поведение потомков от крыс, лишенных хвостов, он вполне мог бы наблюдать мелкие наследственные модификации поведения (например, при кормлении, чистке, передвижении).
Рис. 1.3. Барьер Вейсмана. В 1885 г Август Вейсман провозгласил существование тканевого барьера, защищающего половые клетки от любого влияния сомы. На языке современных терминов это можно сформулировать так: мутации в соматических клетках (клетках тела) никогда не передаются в клетки зародышевой линии (репродуктивные клетки).
Существование вейсмановского барьера было якобы неопровержимо доказано в 1911 г. работой Кастла и Филлипса (Castle, Phillips) из Гарвардского университета. Они удалили яичники у белой морской свинки (альбиноса) и пересадили ей яичники черной морской свинки [4]. Белая мать-реципиент при скрещивании с нормальным белым самцом дала несколько черных потомков в течение шести-двенадцати месяцев после операции. Точно такой же результат наблюдался бы при скрещивании белого самца с черной самкой. Таким образом, новая «белая» сома не оказала никакого влияния на половые клетки в пересаженных «черных» яичниках. Однако подобные «острые» эксперименты можно критиковать по тем же причинам, что и отрубание хвостов. Нет никаких причин предполагать, что адаптивный ответ самок с пересаженными яичниками должен быть связан с генетическим контролем окраски шерсти.
Гипотезу Ламарка пытался доказать австрийский биолог Пауль Каммерер (Kammerer). Эта работа имела трагические последствия. Каммерер сообщил, что изменение полового поведения и некоторых других инстинктов у морских животных и земноводных может приводить к появлению потомства, имеющего те же поведенческие или морфологические черты, которые приобрели их родители в течение жизни. Его наиболее известные эксперименты проведены на жабах-повитухах Alytes obstetricians. Большинство видов жаб и лягушек спариваются в воде. Самцы этих видов крепко захватывают самку и долго (дни и недели) удерживают ее до тех пор, пока она не отложит икру.
Для того чтобы удерживать скользкую самку, у самцов на ладонях и пальцах имеются мозолистые и ороговевшие брачные бугорки. Alytes спариваются на суше, у них нет таких бугорков, так как кожа самок сухая и грубая. Пауль Каммерер обнаружил, что, если Alytes заставить спариваться в воде, как это делают другие жабы, то через несколько поколений у них появляются брачные бугорки. Это и есть приобретенный наследственный признак.
Еще одной исторической причиной, по которой ламаркистское мышление стало «закрытой зоной» в науке, можно считать разгром советской генетики в 40-е гг. Иосиф Сталин поручил селекционеру Т. Д. Лысенко улучшить сельское хозяйство в СССР. К сожалению, пытаясь продемонстрировать увеличение урожая зерновых с помощью приема, названного яровизацией, Лысенко применил неапробированную процедуру. Этот прием заключался в различных способах обработки семян, например, изменении температуры и питания во время прорастания. Он использовался для получения более продуктивных растений, из семян которых, по утверждению Лысенко, вырастают растения лучшего качества. Но лысенковский подход к возрождению идей Ламарка заставил отвернуться от него западньк ученых и генетиков, работающих в Советском Союзе. Проблема противостояния была решена печально известными жестокими преследованиями научных оппонентов Лысенко [5].
Мы считаем, что все эти обстоятельства истории науки и общества надолго затормозили рациональное развитие идей Ламарка, которые сейчас выливаются в представления об обратной связи генов.
Важно упомянуть еще два момента, оказавших влияние на развитие биологической науки. Первое — это, не побоимся сказать, обожествление Дарвина, особенно в Британии. Дарвина превратили в икону, однако мы полагаем, что на определенном этапе это было действительно необходимо для того, чтобы внедрить в умы человечества ключевую идею о естественном отборе случайных изменений. Без этой концепции было бы трудно объяснить многие биологические явления, будь то Ц структура популяции, изменчивость генов или работа иммунной системы. Это было необходимо для противостояния наивному креационизму, утверждавшему, что все виды возникли одновременно и относительно недавно.
Согласно дарвиновской теории эволюции, для появления новых форм и видов необходимо длительное время. Этот факт согласуется с данными современных палеонтологических и геологических исследований. Действительно, между всеми существующими в настоящее время живыми организмами установлено молекулярно-эволюционное родство. Получение данных, позволивших сделать столь важные заключения, стало возможным благодаря появлению в конце 80-х гг. приборов для автоматического определения последовательности нуклеотидов в ДНК (ДНК-секвенаторы). Новая технология дала возможность генетикам и молекулярным биологам получать точную информацию о большом числе генов (о последовательности нуклеотидов в ДНК). Большая часть этих данных собрана в обширных общедоступных базах данных в Интернете, например в Genbank.
Присуждение в 1993 г. Нобелевской премии по химии Кэри Маллису (Mullis) за открытие и разработку метода полимеразной цепной реакции (ПЦР) подчеркивает важность новых технологий в получении научного знания. Метод ПЦР используется с конца 1980-х годов. Он дает возможность увеличивать число копий отдельного участка ДНК в миллионы раз. После этого с помощью секвенатора можно легко определить порядок нуклеотидов A, G, С и Т в этом фрагменте (определения терминов даны в табл. 1.2). Метод ПЦР стал для генетиков новым мощным «телескопическим» средством, позволяющим увидеть молекулярное строение и информационное содержание различных последовательностей нуклеотидов. Именно метод ПЦР, который можно назвать «генетическим копированием», побудил к созданию книги и фильма «Парк юрского периода», показав возможность (пока нереальную) того, что сохранившиеся древние ископаемые останки ДНК можно размножить, а затем с помощью клонирования «воскресить» вымерших животных.
Читайте также
2.1. Становление и основные положения синтетической теории эволюции
2.1. Становление и основные положения синтетической теории эволюции Эволюционизм возник как альтернатива учению о неизменности видов. Вопросы, связанные с возникновением и развитием жизни, прошли через всю интеллектуальную историю человечества. Количество литературы,
2.2. Альтернативные теории эволюции
2.2. Альтернативные теории эволюции Многообразие альтернативных концепций эволюции обычно группируют в три ветви: ламаркизм, теории направленной эволюции и сальтационизм. Каждая ветвь имеет свою богатую историю. В настоящее время эти названия представляют скорее
Глава 2 От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции
Глава 2 От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции Пер. А. НестеровойВ этой главе мы продолжим обсуждение эволюционной биологии в период до появления геномики. Многие из обсуждаемых направлений развития не являлись
Основные положения канцеро-лейкозогенеза
Основные положения канцеро-лейкозогенеза Ниже изложены основные заключения, следующие из приведенного выше биофизического анализа предраковых и особенно предлейкозных состояний и анализа возможных последствий функционирования выявленных порочных потенциально
ТЕОРИИ О ТЕОРИИ ЭВОЛЮЦИИ
ТЕОРИИ О ТЕОРИИ ЭВОЛЮЦИИ Немало недоразумений возникает из-за неумения отличить общеэволюционный подход от частных метаэволюционных проблем и эти последние друг от друга.На вопрос, в чем различие между теориями Ж. Б. Ламарка и Ч. Дарвина, большинство отвечает: Ламарк
НАУЧНОСТЬ ТЕОРИИ ЭВОЛЮЦИИ
НАУЧНОСТЬ ТЕОРИИ ЭВОЛЮЦИИ Каждому, вероятно, приходилось слышать время от времени, что в биологии нет настоящих теорий. В частности, эволюционизму отказывают в статусе подлинной научной теории по следующим соображениям.1. Это в основном описание всевозможных событий, а
2.3. Основные постулаты теории сбалансированного питания
2.3. Основные постулаты теории сбалансированного питания Теория сбалансированного питания возникла вместе с классическим экспериментальным естествознанием и в сущности остается господствующим мировоззрением и в настоящее время. Основы этой теории изложены в ряде
2.6. Основные следствия теории сбалансированного питания
2.6. Основные следствия теории сбалансированного питания Теория сбалансированного питания замечательна не только стройностью и ясностью логики и экспериментальной обоснованностью, но и способностью к предсказанию неизвестных явлений, которые были затем открыты, или
3.2. Основные постулаты теории адекватного питания
3.2. Основные постулаты теории адекватного питания Кризис теории сбалансированного питания и открытие некоторых витальных, неизвестных ранее механизмов (лизосомального и мембранного пищеварения, различных видов транспорта пищевых веществ, общих эффектов кишечной
2.3. Основные постулаты теории сбалансированного питания
2.3. Основные постулаты теории сбалансированного питания Теория сбалансированного питания возникла вместе с классическим экспериментальным естествознанием и в сущности остается господствующим мировоззрением и в настоящее время. Основы этой теории изложены в ряде
2.6. Основные следствия теории сбалансированного питания
2.6. Основные следствия теории сбалансированного питания Теория сбалансированного питания замечательна не только стройностью и ясностью логики и экспериментальной обоснованностью, но и способностью к предсказанию неизвестных явлений, которые были затем открыты, или
3.2. Основные постулаты теории адекватного питания
3.2. Основные постулаты теории адекватного питания Кризис теории сбалансированного питания и открытие некоторых витальных, неизвестных ранее механизмов (лизосомального и мембранного пищеварения, различных видов транспорта пищевых веществ, общих эффектов кишечной
Глава 1. Теории прогрессивной эволюции
Глава 1. Теории прогрессивной эволюции Кто знает, что дух человека возносится ввысь, А дух скота — тот вниз уходит в землю? Экклесиаст, III, 21* Бытовой антропоцентризмЧеловек может оставаться равнодушным ко многому, только не к собственной персоне. В себе его интересует
Биолог Арунас Радзвилавичус рассказывает, почему человек смертен, а кораллы могут жить вечно
Постоянно повторяющиеся жизненные циклы рождения и смерти — это один из фундаментальных принципов природы. Организм зарождается в виде клетки, которая растет и делится, превращается в эмбрион, взрослеет, достигает зрелого возраста, но потом стареет, теряет функциональность и, в конце концов, умирает.
Но почему жизнь должна быть циклической, почему она должна заканчиваться старением и смертью?
Ведь такие животные, как кораллы и морские губки, живут на протяжении тысячелетий и способны к практически бесконечной регенерации и восстановлению клеток. Даже у более сложных животных потомство не наследует возраста своих родителей: каждое новое поколение начинается с одной клетки в ее первозданном состоянии, без признаков старения. Если старение каким-то образом подавляется в репродуктивных клетках, почему остальные ткани организма в конечном итоге истощаются и умирают?
Бессмертные зародышевые клетки — «одноразовое» тело
В конце XIX века немецкий биолог Август Вейсман выяснил, что сложные организмы состоят из двух типов клеток: «бессмертных» зародышевых — вечно молодых клеток, из которых состоит сперма и яйцеклетки, — и «одноразовых» соматических клеток, которые образуют остальную часть тела.
Клетки зародышевой линии формируют наследственность, сохраняя генетическую информацию и передавая ее последующим поколениям. Соматические клетки, напротив, не несут в себе наследственный материал и просто образуют защитную оболочку, которая отбрасывается после размножения.
Вейсман предположил простую модель организма со строгим разделением между зародышевыми клетками и соматическими — так называемый барьер Вейсмана, который не позволяет возрастным изменениям соматических клеток передаваться через зародышевые клетки к следующему поколению, которое всегда рождается молодым.
Совсем недавно идеи Вейсмана были кардинально пересмотрены Томасом Кирквудом в его теории «одноразовой сомы». Кирквуд, вдохновленный идеями Медавара и Уильямса, утверждал, что сила естественного отбора уменьшается с возрастом, потому что большинство организмов в естественной среде умирает из-за внешних опасностей, таких как хищники, паразиты и истощение.
Организмы должны вкладывать ресурсы как в репродуктивную функцию, так и в функцию сохранения и восстановления соматических клеток. В связи с тем, что вероятность выживания с учетом внешних угроз со временем снижается, оптимальная стратегия состоит в том, чтобы выделять все меньше и меньше ресурсов на обслуживание соматических клеток с течением времени. Отсутствие восстановления клеток на поздних стадиях жизненного цикла приводит к постепенной потере функциональности и постепенному распаду — старению.
Что особенно важно, Кирквуд понял, что его теория «одноразовой сомы» работает только тогда, когда существует строгое разграничение между зародышевыми и соматическими клетками. Организмы, в которых барьер Вейсмана нарушен и соматические клетки также используются для размножения, не должны стареть.
Словом, в реальном мире картина оказалась более сложной, чем могла предсказать модель Вейсмана.
У сложных животных, таких как млекопитающие, птицы и насекомые, предположение Вейсмана о жестком разграничении зародышевых клеток и соматических справедливо: лишь относительно небольшая группа клеток взрослой особи хранит репродуктивный потенциал, а остальные не могут дать жизнь новому организму.
Но у самых древних жителей планеты, таких как гидры, кораллы и губки, все не так. Даже будучи взрослыми, эти организмы сохраняют большие популяции универсальных стволовых клеток, которые могут генерировать как соматические, так и репродуктивные клетки, то есть зародышевые клетки и соматические на самом деле не разделены. Это отсутствие зародышевой секвестрации дает кораллам и их сородичам силу регенерации и вегетативного размножения.
Не менее впечатляют различия в продолжительности жизни животных и темпах старения.
Средняя продолжительность человеческой жизни составляет около 70 лет — гораздо дольше, чем у домашних мышей, которые живут только 2 года, но гораздо меньше, чем у коралловых колоний, живущих на протяжении тысячелетий без признаков старения. У организмов, которые не стареют, хронологически старые и молодые особи практически идентичны, с универсальными популяциями стволовых клеток, постоянно обновляющими свои соматические и репродуктивные ткани.
Барьер Вейсмана не универсален для всех животных, а относится лишь к сложным организмам, подверженным соматическому старению и смерти. Не ясно, что заставило эволюцию разделить зародышевые и соматические клетки, но ответ также прольет свет на происхождение смертности сложных животных.
За эволюцией старения стоит клеточная энергетика
Существуют признаки того, что эволюция зародышевых и соматических клеток связана с клеточной энергетикой.
Клетки животных производят энергию через дыхание в митохондриях — органоидах бактериального происхождения, которые сохраняют свои собственные крошечные геномы, отличные от хромосом внутри ядра. Каждая клетка содержит десятки и сотни митохондрий, и каждая митохондрия имеет несколько молекул ДНК. Этот крошечный геном регулирует функцию митохондрии; ее целостность имеет решающее значение для клеточного дыхания, так как дефектные гены митохондрий часто приводят к изнурительным болезням, нервно-мышечной дегенерации и ранней смерти.
Большая часть дефектов в генах митохондрий возникают в результате случайных ошибок при воспроизведении ДНК. Так как клетки в развивающемся организме делятся, их митохондрии делают то же самое, каждый раз производя новые мутации ДНК.
В нашей недавней статье в PLoS Biology мы показываем, что в организмах с быстрым накоплением митохондриальных дефектов естественный отбор способствует изоляции зародышевой клетки с меньшим числом циклов воспроизведения. Это сводит к минимуму повреждение энергопроизводящих органоидов, которые потенциально могут быть переданы следующему поколению. Если темпы накопления ошибок невелики, барьер между зародышевыми и соматическими клетками не развивается.
Частота, при которой возникают ошибки копирования ДНК (скорость мутаций), различается среди групп животных, но эти различия поразительно согласуются с положениями новой гипотезы.
Скорость мутаций у высших животных, таких как млекопитающие, рептилии и птицы, удивительно высока, в 10-50 раз выше скорости, типичной для генов в ядре. С другой стороны, крайне медленная скорость мутаций митохондрий характерна для большинства древних групп животных и растений, которые способны к клональному размножению, регенерации и, казалось бы, неограниченной продолжительности жизни, а также, что особенно важно, не имеют строгого разграничения между зародышевыми и соматическими клетками.
Мы считаем, что самые древние животные развивались и воспроизводились так же, как современные кораллы и губки: это были сидячие фильтраторы, которые имели большие популяции недифференцированных стволовых клеток, непрерывно производящих как соматические, так и зародышевые клетки. Они могли восстанавливать свои части тела и размножаться путем, например, отделения группы клеток от их соматических тканей, как растения и гидры.
Благодаря низкой скорости мутаций митохондрий у них не было настоящих соматических клеток, и они были практически бессмертными.
Однако из-за роста уровня кислорода в атмосфере на границе между эдиакарским и кембрийским периодами около 550 млн лет назад увеличилась метаболическая и физическая активность некоторых первобытных животных, что привело к переходу от сидячей фильтрации к более высокой подвижности и хищничеству. Это в свою очередь увеличило риск накопления дефектов в их митохондриальных геномах и запустило процесс разделения и защиты зародышевых клеток.
Разделение зародышевых и соматических клеток позволило развиться высшим животным, но и положило начало старению и смертности.
Соматические клетки, избавленные от необходимости поддерживать бессмертие, получили возможность практически неограниченной дифференцировки в узкоспециализированные ткани, такие как кишечник, мозг или кожа.
Только в сложных животных мы видим одноразовые ткани с высокими энергетическими потребностями и высокой скоростью митохондриальных мутаций. Эти ткани никогда не обновляются или регенерируются. Нервные клетки в мозге человека, например, зачастую раньше других страдают от митохондриальных заболеваний, но не заменяются, так как это приведет к изменению сети синаптических связей, которые отвечают за наши воспоминания, личность и интеллект.
Сложность животных, сильная дифференциация на множество типов специализированных тканей и органов и даже сознание — все это стало возможным благодаря строгой зародышевой-соматической дихотомии и неразрывно связано со смертностью.
Человечество давно стремится к долголетию, и даже если наша продолжительность жизни сейчас растет, всему есть предел — бессмертие может быть в корне несовместимо с биологической сложностью животных с высокоэнергетическим образом жизни.
Интересная статья? Подпишитесь на наш канал в Telegram, чтобы получать больше познавательного контента и свежих идей.