Что такое arg z комплексные числа
Что такое arg z комплексные числа
VII .1. Формы записи комплексных чисел и действия над ними
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Комплексные числа
Главная > Учебные материалы > Математика: Комплексные числа | ||
| ||
1.Понятие комплексного числа. 2.Тригонометрическая форма комплексного числа. |
1.Понятие комплексного числа.
Выражение вида z = x + iy называется комплексным числом.
Операции над комплексными числами.
1. Сумма (разность) комплексных чисел.
z 1 +z 2 = x 1 +x 2 +i(y 1 +y 2 ).
2. Произведение комплексных чисел.
3. Деление двух комплексных чисел.
Рассмотрим на плоскости декартову прямоугольную систему координат Oxy.
Каждому комплексному числу Z = x + iy ставится в соответствие единственная точка плоскости z(xy). Плоскость Oxy, где каждая точка отождествлена с комплексным числом, называется комплексной.
Координатные оси Ox и Oy, на которых расположены действительные и мнимые числа, называются действительной и мнимой осями.
2.Тригонометрическая форма комплексного числа.
До любой точки комплексной плоскости из начала координат можно провести вектор определенной длины r. Число r называется модулем комплексного числа z и обозначается |z|.
Угол ϕ, образованный между вектором и осью Ox, называется аргументом комплексного числа z и обозначается Arg z. Из значения ϕ = Arg z выделяется главное значение arg z, которое кратно 2π.
ϕ = Arg z = arg z + 2kπ где 0≤ argz < 2π
Таким образом: x = r cos ϕ, y = r sin ϕ.
Следовательно, комплексное число z = x + iy можно представить как:
Представление комплексного числа в такой форме, где r = |z| ≥ 0, ϕ = Arg z, называется тригонометрической формой комплексного числа.
Модуль комплексного числа
Что такое комплексное число
Во множестве комплексных чисел содержится множество вещественных чисел. Если множество комплексных чисел — это всевозможные пары (x, y), то содержащееся в нем множество вещественных чисел — это пары (x, 0). Те же комплексные числа, которые задают пары (0, y) являются мнимыми.
Что такое модуль комплексного числа
Модуль комплексного числа — это длина вектора, который изображает комплексное число.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Любое комплексное число кроме 0 может быть выражено в тригонометрической форме.
В этом виде \(\left|z\right|\) — модуль комплексного числа z. Может обозначаться как p и r.
Если \(\left|z\right|\;=\;r,\) то r будет обозначать длину радиус-вектора точки M (x, y).
Вычисление модуля комплексного числа, если в алгебраической форме оно выглядит как z = x + iy, возможно по следующей формуле:
То есть модуль комплексного числа можно вычислить как квадратный корень из суммы квадратов действительной и мнимой его частей.
Модуль комплексного числа имеет следующие свойства:
Что такое аргумент комплексного числа
Аргумент комплексного числа — это угол \(\varphi\) радиус-вектора точки, соответствующей комплексному числу \(z\;:\;\varphi\;=\;arg\;z\) на комплексной плоскости. Этот угол измеряется в радианах.
Каждое комплексное число, которое не равно нулю, имеет бесконечное множество аргументов. Эти аргументы отличаются друг от друга на целое число полный оборотов — \(360^\circ\;\cdot\;k\) при k — любое число.
Связь аргумента комплексного числа с его координатами отражена в следующих формулах:
Важно помнить, что ни одна из этих формул отдельно недостаточна для того, чтобы найти аргументы. Формулы используются в совокупности, а также учитывается номер четвертый на координатной плоскости, в которой находится комплексное число.
Как вывести формулу модуля
Примеры решения задач
Задача
Найти модуль числа \(z\;=\;-5\;+\;15i\)
Решение
\(x\;=\;Re\;z\;=\;-15\) — действительная часть, а \(y\;=\;Im\;z\;=\;15\) — мнимая часть комплексного числа \(z\;=\;-5\;+\;15i.\)
Таким образом, модуль числа равен следующему выражению:
Задача
Найти расстояние между числами \(z_1\;=\;1\;-\;3i,\;z_2\;=\;-2\;+\;2i\) на комплексной плоскости.
Решение
Расстояние между двумя комплексными числами находятся как модуль разности комплексных чисел. Используем необходимую формулу:
Задача
Найти значение аргумента комплексного числа \(\sqrt<34>\) и выразить его в тригонометрической форме.
Решение
Теперь для нахождения тригонометрической формы записи комплексного числа необходимо найти модуль.
Исходя из этого, тригонометрическая форма комплексного числа выглядит следующим образом:
Задача
Решение
Комплексные числа
Алгебраическая форма записи комплексных чисел
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Аргумент комплексного числа
Считается, что комплексное число нуль аргумента не имеет.
Тогда оказывается справедливым равенство:
(3) |
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественная полуось | ||||
Положительная мнимая полуось | ||||
Второй квадрант | ||||
Отрицательная вещественная полуось | Положительная вещественная полуось | |||
Знаки x и y | ||||
Главное значение аргумента | 0 | |||
Аргумент | φ = 2kπ | |||
Примеры |
значение
аргумента
значение
аргумента
значение
аргумента
x z
квадрант
x z
мнимая
полуось
y z
квадрант
Положительная вещественная полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Положительная мнимая полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Отрицательная вещественная полуось
Отрицательная мнимая полуось
x z = x + i y может быть записано в виде
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел и
записанных в экспоненциальной форме, осуществляется по формулам
Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Извлечение корня натуральной степени из комплексного числа
Пусть — произвольное комплексное число, отличное от нуля.
Для того, чтобы решить уравнение (8), перепишем его в виде
следствием которых являются равенства
(9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
(10) |
то по формуле (10) получаем:
- Что такое arf звездные войны
- Что такое arg в играх